TOTALITY as the Extrapolated Invariant of dx^{μ} Condensed into the Theory of Null Unity

Hrishi Mukherjee

Simulonic Research Division, New Canada

Abstract

This article expresses Totality as the extrapolated invariant emerging after all admissible geometric, informational, and bilateral structures are reduced to the differential alphabet dx^{μ} under the Theory of Null Unity. By imposing (i) Null Unity's metric selection rule, (ii) Infosophy's coherence-induced geometry, and (iii) Bilateral symmetry constraints, the entire representational universe collapses to the quadratic line element ds^2 and ultimately to its generators. Totality is shown to be the terminal diffeomorphism–gauge invariant built from dx^{μ} and the induced metric $g(\Psi)$. A canonical form and an extrapolated form of Totality are provided, with a minimal TikZ diagram illustrating differential reduction.

Keywords: Null Unity, Infosophy, Bilateral Ratios, Differential Geometry, Totality, Invariant Structures, Metric Induction

1. Introduction

Null Unity, Infosophy, and Bilateral Ratios impose a collapse of all representational forms to a single invariant:

$$ds^2 = g_{\mu\nu}(\Psi) \, dx^{\mu} dx^{\nu}.$$

Once this invariant is enforced, the core algebraic substrate is the differential basis dx^{μ} . We seek to express *Totality* as the extrapolated and condensed invariant derived from this foundation.

2. Axioms of Null Unity

2.1. Metric Selection

Null Unity identifies multiple presentations with the same quadratic interval:

$$\frac{\nabla^{-1}}{\infty} = ds^2, \qquad \frac{\varnothing}{\nabla^1 \infty} = ds^2.$$

2.2. Infosophic Metric Induction

The metric arises from coherence-weighted informational gradients:

$$g_{\mu\nu}(\Psi) = \lambda \langle \partial_{\mu}\Psi, \partial_{\nu}\Psi \rangle_{\mathcal{C}}.$$

2.3. Bilateral Ratio Constraint

Pre- and post-Null Unity forms obey

$$\mathbb{B} = \frac{L}{R} = 1,$$

ensuring representational consistency.

3. Differential Collapse

Collecting all constraints yields:

$$ds^2 = g_{\mu\nu}(\Psi) \, dx^{\mu} dx^{\nu},$$

and locally,

$$ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}.$$

Thus only the differential alphabet dx^{μ} remains irreducible.

4. Totality: Formal Definition

Let \mathcal{F} denote the set of admissible scalar densities constructed from the differential basis and induced geometrical operators.

[Totality]

$$\mathfrak{T} = \underset{\text{Diff} \times \text{Gauge} \times \text{Bilateral}}{\text{Inv}} \Big(\mathcal{F}(dx^{\mu}; g(\Psi), \nabla, \star) \Big).$$

Totality is the terminal invariant once all presentational freedom is quotiented.

5. Canonical Form of Totality

The minimalist representative of Totality is the volume form:

$$\star 1 = \sqrt{|g(\Psi)|} \, d^n x,$$

so that

$$\boxed{\mathfrak{T} = \int_{M} \sqrt{|g(\Psi)|} \, d^{n} x.}$$

6. Extrapolated Totality

The extrapolated invariant includes higher-order scalar structures:

$$\mathfrak{T}_{\rm ex} = \int_M \left(\alpha_0 \star 1 + \alpha_1 R \star 1 + \alpha_2 \|d\Psi\|_{\mathcal{C}}^2 \star 1 + \cdots \right),$$

provided all terms preserve the Null Unity condition $\mathbb{B} = 1$.

7. Mini TikZ Diagram

 $\frac{\text{Null Unity Invariants}}{ds^2}$ $g_{\mu\nu}(\Psi)dx^{\mu}dx^{\nu}$ $\overline{dx^{\mu}}$

8. Conclusion

Null Unity selects the invariant (ds^2) , Infosophy induces its geometry $(g_{\mu\nu}(\Psi))$, Bilateral Ratios enforce representational collapse $(\mathbb{B}=1)$.

Thus:

Totality = the extrapolated invariant expressible purely through dx^{μ} .

References

References

- [1] H. Mukherjee, Foundational Systems of Null Unity, Simulonic Research Manuscripts, (2025).
- [2] G. Greimel, Infosophy: Coherence, Intent, and the Genesis of Form, Infosophic Press, (2024).
- [3] O. Boeschenstein, Optimal Balance Theory and Bilateral Structures, OBT Monographs, (2023).
- [4] R. M. Wald, General Relativity, University of Chicago Press, (1984).
- [5] T. Frankel, *The Geometry of Physics: An Introduction*, Cambridge University Press, (2011).