The Null Unity System of Bilateral Equations

A Founding Document for a System of Equations for a Bilateral Model of the Expansive Universe

Authors: Hrishi Mukherjee and Jeffrey Holman

Affiliation: Simulon Research Group; Canada, Holland

November 3, 2025

Contents

1	Intr	roduction	2
2	The	Null Unity System of Bilateral Equations	3
	2.1	Set 1: The Three Fundamental Equations	3
	2.2	System 1: Equations I-IV	3
	2.3	System 2: Equations I'-IV'	4
	2.4	System 3: Equations V-VIII	4
	2.5	System 4: Equations V'-VIII'	5
	2.6	System 5: Equations IX-X	5
	2.7	System 6: Equations XI-XII	5

1 Introduction

This document serves as a founding document for the Null Unity System of Equations beginning with the governance set of three fundamental equations which describe the bilaterality and expansion of the universe emerging from a state of Null Unity, followed by 12 equations parted into 6 Systems of Equations describing the unification of the three fundamental equations upon the axes of Null Unity.

2 The Null Unity System of Bilateral Equations

The following text presents the Null Unity System of Equations for the Bilaterality of an Expansive Universe.

2.1 Set 1: The Three Fundamental Equations

$$\frac{d_U^2}{m_U^2} = \frac{G}{m_U^2 c} = \frac{\propto h}{2\pi} = \frac{ce^2 \mu_0}{4\pi}$$

$$\frac{\nabla^{-1}}{\infty} = ds^2$$

$$\frac{\varnothing}{\nabla^1 \infty} = ds^2$$

2.2 System 1: Equations I-IV

$$\frac{d_U^2}{m_U^2} = \frac{\nabla^{-1}}{\infty} = \frac{ds^2}{1}$$

$$\frac{G}{m_U^2c} = \frac{\nabla^{-1}}{\infty} = \frac{ds^2}{1}$$

$$\frac{\propto h}{2\pi} = \frac{\nabla^{-1}}{\infty} = \frac{ds^2}{1}$$

$$\frac{ce^2\mu_0}{4\pi} = \frac{\nabla^{-1}}{\infty} = \frac{ds^2}{1}$$

2.3 System 2: Equations I'-IV'

$$\frac{d_U^2\infty}{m_U^2\nabla^{-1}}=\varnothing=\frac{ds^2}{1}$$

$$\frac{G\infty}{m_U^2 c \nabla^{-1}} = \varnothing = \frac{ds^2}{1}$$

$$\frac{\propto h\infty}{2\pi\nabla^{-1}}=\varnothing=\frac{ds^2}{1}$$

$$\frac{ce^2\mu_0\infty}{4\pi\nabla^{-1}} = \varnothing = \frac{ds^2}{1}$$

2.4 System 3: Equations V-VIII

$$\frac{d_U^2}{m_U^2} = \frac{\varnothing}{\nabla^1 \infty} = \frac{ds^2}{1}$$

$$\frac{G}{m_U^2c} = \frac{\varnothing}{\nabla^1\infty} = \frac{ds^2}{1}$$

$$\frac{\propto h}{2\pi} = \frac{\varnothing}{\nabla^1 \infty} = \frac{ds^2}{1}$$

$$\frac{ce^2\mu_0}{4\pi} = \frac{\varnothing}{\nabla^1\infty} = \frac{ds^2}{1}$$

2.5 System 4: Equations V'-VIII'

$$\frac{d_U^2 \nabla^1 \infty}{m_U^2} = \varnothing = \frac{ds^2}{1}$$

$$\frac{G\nabla^1\infty}{m_U^2c}=\varnothing=\frac{ds^2}{1}$$

$$\frac{\propto h\nabla^1\infty}{2\pi}=\varnothing=\frac{ds^2}{1}$$

$$\frac{ce^2\mu_0\nabla^1\infty}{4\pi}=\varnothing=\frac{ds^2}{1}$$

2.6 System 5: Equations IX-X

$$\frac{\propto h\nabla^1\infty}{\pi} = \frac{\mathcal{Q}}{2} = \frac{ds^2}{1}$$

$$\frac{ce^2\mu_0\nabla^1\infty}{2\pi} = \frac{\varnothing}{2} = \frac{ds^2}{1}$$

2.7 System 6: Equations XI-XII

$$\frac{\propto h\nabla^1\infty}{2} = \frac{\varnothing}{\pi} = \frac{ds^2}{1}$$

$$\frac{ce^2\mu_0\nabla^1\infty}{4} = \frac{\varnothing}{\pi} = \frac{ds^2}{1}$$