Two Super-Unified Constructions Linking Infosophy and Null Unity

Hrishi Mukheree & Gösta Greimel

November 3, 2025

Abstract

We present two complementary super–unified equations connecting the Infosophic Field Formula (Infosophy) and the Null Unity framework. In the first, Null Unity within Infosophy, the Infosophic generator produces a field that Null Unity collapses to geometry. In the second, Infosophy within Null Unity, Null Unity is the primary machinery while Infosophy selects and steers which bilateral/topological route achieves the collapse. Both constructions terminate in the same geometric fixed point, ds^2 , and yield domain–level interpretations for GR, QM, and EM. We cite the original Null Unity and Infosophy sources throughout. [1,2]

1 Background: Components from the Source Theories

From Infosophy (generator)

Infosophy posits an adaptive resonance engine with intent and coherence control:

$$\Psi(x,t) = \mathcal{R}_{\text{adapt}} (\mathcal{I}_{\text{opt}} \circ \mathcal{D}_0, \, \mathcal{C}(\Psi), \, \mathcal{A}_{\text{intent}}) = \sum_{n=0}^{\infty} w_n(\Psi) \, \mathcal{I}_n(\Psi) \, \phi_n(x,t; F(\Psi), \chi(\Psi), Q(\Psi)),$$

where \mathcal{D}_0 is *Dynamic Nothingness*, \mathcal{I}_{opt} is Pareto-optimized, self-referential information, $\mathcal{C}(\Psi)$ is coherence (ledger-like validation), and \mathcal{A}_{intent} is awareness/intent. [2]

From Null Unity (collapser)

Null Unity asserts multiple bilateral/topological identities that universally reduce expressions to the line–element:

$$\frac{\nabla^{-1}}{\infty} = ds^2, \qquad \frac{\varnothing}{\nabla^1 \infty} = ds^2, \qquad \frac{\varnothing}{2} = ds^2, \qquad \frac{\varnothing}{\pi} = ds^2,$$

and organizes physics so that disparate constructions collapse to the same ds^2 . [1]

2 Super-Unified Equation I: Null Unity within Infosophy

2.1 Definition

$$ds^{2} = \text{NU} \circ \mathcal{R}_{\text{adapt}} (\mathcal{I}_{\text{opt}} \circ \mathcal{D}_{0}, \mathcal{C}(\Psi), \mathcal{A}_{\text{intent}})$$
(1)

Here, the Infosophic block

$$\mathcal{R}_{\mathrm{adapt}} (\mathcal{I}_{\mathrm{opt}} \circ \mathcal{D}_0 , \mathcal{C}(\Psi), \mathcal{A}_{\mathrm{intent}})$$

generates a candidate field Ψ from Dynamic Nothingness using optimized information, continuously reweighted by coherence and guided by intent. The NU[·] projector then collapses this field to geometry ds^2 .

2.2 Operator meaning

We regard NU as a bilateral/topological projector implementing any of the canonical routes:

$$\mathrm{NU}[X] := \left(\frac{\nabla^{-1}}{\infty}\right) X \ = \ \left(\frac{\varnothing}{\nabla^{1}\infty}\right) X \ = \ \left(\frac{\varnothing}{2}\right) X \ = \ \left(\frac{\varnothing}{\pi}\right) X \ \longrightarrow \ ds^{2}.$$

All admissible routes are equivalent at the fixed point.

2.3 Domain reductions

- GR: Large–scale, smooth, coherence–selected Ψ collapsed by NU yields curvature constraints on ds^2 (GR–like).
- QM: Pareto-dominant modes $\mathcal{I}_n(\Psi)$ with weights $w_n(\Psi)$ survive to geometry under NU; amplitudes/phases reflect coherence selection prior to collapse.
- EM: π -null (and half-null) routes encode U(1) holonomy/flux quantization as topological invariants of the collapse to ds^2 .

3 Super-Unified Equation II: Infosophy within Null Unity

3.1 Definition and selection logic

Let $\mathcal{P} = \{ O_k \} = \{ \frac{\nabla^{-1}}{\infty}, \frac{\varnothing}{\nabla^1 \infty}, \frac{\varnothing}{2}, \frac{\varnothing}{\pi} \}$. Define the *Null Unity selector* (governed by intent/coherence):

$$ds^2 = NU_{\mathcal{A},\mathcal{C}} [\mathcal{I}_{opt} \circ \mathcal{D}_0]$$
 (2)

$$\operatorname{NU}_{\mathcal{A},\mathcal{C}}(X) := O_{k^*}(X) \to ds^2, \qquad k^* = \arg\max_{k \in \mathcal{P}} \mathcal{C}(\Psi_k \mid \mathcal{A}_{\operatorname{intent}}), \quad \Psi_k := O_k[X].$$
 (3)

Here, Null Unity is *primary*; Infosophy appears as: (i) the construction of the input $X = \mathcal{I}_{\text{opt}} \circ \mathcal{D}_0$, and (ii) the *selector* that, using coherence \mathcal{C} and intent $\mathcal{A}_{\text{intent}}$, chooses which O_k route collapses X to ds^2 .

3.2 Domain reductions

- GR: When \mathcal{C} favors smooth, large—scale coherence, the selector tends to pick inverse—gradient routes $O_k = \nabla^{-1}/\infty$, producing GR—compatible ds^2 .
- QM: When C emphasizes mode—wise stability under \mathcal{I}_{opt} (Pareto dominance), the chosen route preserves admissible amplitudes until collapse, encoding "measurement" as coherence—survival to ds^2 .
- EM: When C prizes topological regularity, the selector picks π -null or half-null routes, enforcing U(1) holonomy and flux quantization at collapse.

4 Synthesis and Contrast

Both super–unified equations terminate at the same geometric invariant:

$$\forall$$
 admissible routes, $\Psi \xrightarrow{\text{NU}} ds^2$.

Their difference is governance:

- Null Unity within Infosophy: Infosophy generates, Null Unity collapses (1).
- Infosophy within Null Unity: Null Unity governs, Infosophy selects/steers (2).

In both, GR/QM/EM appear as constraint regimes of the geometric fixed point ds^2 .

References

- [1] Mukherjee, Hrishi. The Null Unity System of Equations. Simulon Research Group, 2025.
- [2] Greimel, Gösta. Übersetzte Kopie von "Infosophische Feldformel" (Translated copy of "Infosophic Field Formula"), 2025.